REGULAR STRUCTURAL PAPERS

ω -2 θ scans of speed 4°	$\theta_{\rm max} = 50.0^{\circ}$
min ⁻¹ and ω -scan width	$h = -21 \rightarrow 20$
$(1.24 + 0.5 \tan\theta)^{\circ}$	$k = 0 \rightarrow 10$
Absorption correction:	$l = 0 \rightarrow 11$
none	3 standard reflections
3133 measured reflections	monitored every 100
3133 independent reflections	reflections
•	intensity variation: none

Refinement

Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.316$
Final $R = 0.053$	$\Delta \rho_{\rm max} = 0.089 \ {\rm e} \ {\rm \AA}^{-3}$
wR = 0.047	$\Delta \rho_{\rm min} = -0.016 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.19	Atomic scattering factors
2043 reflections	from International Tables
424 parameters	for X-ray Crystallogra-
All H-atom parameters re-	phy (1974, Vol. IV, Table
fined	2.3.1)
Unit weights applied	

Table 3. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$ for compound (B)

$U_{eq} =$	$\frac{1}{2} \sum_{i}$	$\Sigma_j U_{ij}a$	*a;	'a _i .a _j .
------------	------------------------	--------------------	-----	-----------------------------------

			, ,	
	x	y	z	U_{eq}
N(1)	0.1540 (1)	0.0892 (4)	0.5108 (3)	0.061 (2)
C(1)	0.1915 (2)	0.0468 (4)	0.6176 (3)	0.054 (3)
C(2)	0.2102 (2)	-0.0822 (5)	0.6304 (4)	0.063 (3)
C(3)	0.2474 (2)	-0.1212 (5)	0.7340 (4)	0.062 (3)
C(4)	0.2682 (2)	-0.0359 (4)	0.8255 (3)	0.053 (3)
C(5)	0.2474 (2)	0.0924 (4)	0.8128 (4)	0.052 (3)
C(6)	0.2096 (2)	0.1320 (5)	0.7104 (4)	0.055 (3)
C(7)	0.3086 (2)	-0.0900 (4)	0.9297 (4)	0.057 (3)
C(8)	0.3512 (2)	-0.0335 (4)	1.0112 (3)	0.049 (2)
C(11)	0.0973 (2)	0.1566 (4)	0.5239 (3)	0.054 (3)
C(12)	0.0596 (2)	0.1137 (5)	0.6060 (4)	0.064 (3)
C(13)	0.0050 (2)	0.1791 (5)	0.6222 (4)	0.066 (3)
C(14)	-0.0121 (2)	0.2860 (4)	0.5533 (4)	0.063 (3)
C(15)	0.0248 (2)	0.3273 (5)	0.4684 (4)	0.071 (3)
C(16)	0.0794 (2)	0.2633 (5)	0.4559 (4)	0.065 (3)
O(17)	-0.0648 (1)	0.3588 (3)	0.5616 (3)	0.090 (2)
C(18)	-0.1034 (3)	0.3217 (7)	0.6477 (6)	0.090 (4)
C(21)	0.1685 (2)	0.0532 (4)	0.3976 (3)	0.051 (3)
C(22)	0.2305 (2)	0.0287 (4)	0.3810 (4)	0.062 (3)
C(23)	0.2455 (3)	-0.0087 (5)	0.2707 (5)	0.073 (3)
C(24)	0.2003 (3)	-0.0218 (5)	0.1743 (5)	0.077 (4)
C(25)	0.1395 (3)	0.0039 (5)	0.1881 (4)	0.072 (3)
C(26)	0.1237 (2)	0.0417 (4)	0.2982 (4)	0.060 (3)
C(31)	0.3870 (2)	-0.1102 (4)	1.1089 (3)	0.049 (2)
C(32)	0.4306 (2)	-0.0518 (5)	1.1924 (5)	0.082 (3)
C(33)	0.4624 (3)	0.1206 (7)	1.2873 (5)	0.089 (4)
C(34)	0.4529 (2)	-0.2494 (6)	1.2996 (4)	0.081 (4)
C(35)	0.4117 (3)	-0.3092 (6)	1.2163 (5)	0.103 (4)
C(36)	0.3799 (3)	-0.2406 (6)	1.1226 (5)	0.090 (4)
C(41)	0.3665 (2)	0.1066 (4)	1.0059 (3)	0.048 (2)
C(42)	0.3446 (2)	0.1972 (5)	1.0820 (4)	0.056 (3)
C(43)	0.3596 (2)	0.3261 (5)	1.0758 (4)	0.064 (3)
C(44)	0.3970 (2)	0.3690 (5)	0.9932 (5)	0.069 (3)
C(45)	0.4194 (2)	0.2800 (6)	0.9190 (5)	0.075 (3)
C(46)	0.4046 (2)	0.1512 (5)	0.9248 (4)	0.063 (3)

Table 4. Geometric parameters (Å	$\mathbf{A}, \mathbf{^{\circ}}$) for compound (1	B)
----------------------------------	---	----

N(1)-C(1)	1.425 (5)	C(8)—C(31)	1.484 (5)
N(1)-C(11)	1.430 (5)	C(8)-C(41)	1.484 (6)
N(1)-C(21)	1.396 (5)	C(14)O(17)	1.376 (6)
C(4)—C(7)	1.473 (5)	O(17)C(18)	1.409 (8)
C(7)—C(8)	1.343 (5)		
C(1)-N(1)-C(11)	117.6 (3)	C(7) - C(8) - C(31)	121.0 (4)
C(1) - N(1) - C(21)	120.7 (3)	C(7) - C(8) - C(41)	122.1 (4)

 \square 1993 International Union of Crystallography Printed in Great Britain – all rights reserved

C(11)-N(1)-C(21)	121.3 (3)	C(13)-C(14)-O(17)	124.5 (4)
C(3)—C(4)—C(7)	116.7 (4)	C(14)-O(17)-C(18)	117.9 (5)
C(4)—C(7)—C(8)	131.1 (5)		

Locations of H atoms in both compounds were found from difference Fourier maps, but the 12 H atoms bonded to the methyl C atoms C(17), C(27), C(17)' and C(27)' in (A) could not be located owing to their free rotation. The high R value for compound (A) may result from the poor crystal quality and exclusion of the 12 H atoms from the structure-factor calculations.

Data collection: MXC^3 control. Data reduction: Mac Science software. Program(s) used to solve structure: *MULTAN78* (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978). Program(s) used to refine structure: *DS*SYSTEM* (Okada & Koyama, 1991).

The author is grateful to Professors Y. Saito and M. Tokonami (The University of Tokyo) for valuable discussions, as well as Dr K. Tani. Mr K. Okada (Ricoh Company Ltd) is thanked for the modification of his program.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, complete geometry and least-squares-planes data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71127 (57 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS1045]

References

- Foitzik, J. K., Paulus, H., Haase, W. & Loub, J. (1991). Acta Cryst. C47, 1640-1642.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium. Okada, K. & Koyama, H. (1991). J. Appl. Cryst. 24, 1067-1070.

Acta Cryst. (1993). C49, 1514–1517

Two Novel Ten-Membered Ring Compounds: 1,2,5,8-Dithiadiazecine-6,7-diones

KENTARO YAMAGUCHI, TAKASHI ITOH, KAZUHIRO NAGATA, MAMIKO OKADA AND AKIO OHSAWA

School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan

(Received 8 December 1992; accepted 26 January 1993)

Abstract

The structures of two new ten-membered ring compounds, 3,4,5,8,9,10-hexamethyl-1,2,5,8-dithiadiazecine-6,7(5H,8H)-dione (I) and 11,14-dimethyldibenzo[c,i]-

[1,2,5,8]dithiadiazecine-12,13-(11*H*,14*H*)-dione (II), have been determined. The two ten-membered rings, exhibiting asymmetric conformation, are almost identical. The disulfide bond lengths are 2.058 (1) and 2.053 (1) Å for (I) and (II), respectively.

Comment

In the course of our investigation of superoxides of electron-deficient heteroaromatics (Itoh, Nagata, Okada & Ohsawa, 1990, 1992; Itoh, Nagata, Okada, Takahashi & Ohsawa, 1991) we recently found that the reaction of 3,3'-dimethyl-2,2'-bithiazolium salts with potassium superoxide afford new ten-membered ring compounds: 1,2,5,8-dithiadiazecine-6,7-diones (Itoh, Nagata, Okada, Yamaguchi & Ohsawa, 1992). This reaction is specific for the superoxide, one of the most noteworthy active oxygen compounds.

Figs. 1 and 2 show ORTEPII (Johnson, 1976) drawings of molecules (I) and (II), respectively, with the crystallographic numbering system. The ten-membered rings in (I) and (II) exhibit asymmetric conformation as shown in the figures. Two N-methyl amide moieties, connected with C6 and C7, are located in opposite directions for both compounds; this results from the repulsion between the two carbonyl O atoms. This probably gives rise to the break down of the symmetry in the ten-membered ring. The asymmetric conformation is also observed in solution by NMR spectroscopy. For both compounds each Nmethyl amide conformation is cis, which is thought to be preferable because N-methylbenzanilide exists predominantly in a cis-amide conformation in solution and in the crystal form (Itai, Toriumi, Tomioka, Kagechika, Azumaya & Shudo, 1989). The bond lengths and torsion angles about the disulfide bonds are respectively 2.058 (1) Å and 110.6° in (I), and 2.053 (1) Å and 105.1 (2)° in (II). Two S-C torsion angles indicate inconsistent values for both compounds [S1-S2-C3-C4-98.2(2) in (I),-89.7 (3)° in (II) and S2-S1-C10-C9 -103.7 (2) in (I), $-108.8 (3)^{\circ}$ in (II)].

Fig. 1. ORTEPII drawing of (I). Ellipsoids are drawn at the 50% probability level while isotropic H-atom thermal parameters are represented by spheres of arbitrary size.

Fig. 2. ORTEPII drawing of (II). Ellipsoids are drawn at the 50% probability level while isotropic H-atom thermal parameters are represented by spheres of arbitrary size.

Experimental Compound (I)

Crystal data

 $C_{12}H_{18}N_2O_2S_2$ $M_r = 286.41$ Monoclinic $P2_1/c$ a = 11.015 (3) Å b = 12.870 (1) Å c = 10.575 (1) Å $\beta = 94.78$ (1)° V = 1494.0 (5) Å³ Z = 4 $D_x = 1.273$ Mg m⁻³

Data collection

Rigaku AFC-5 diffractometer $\omega/2\theta$ scans, ω -scan width $(1.3 + 0.14 \tan \theta)^{\circ}$, speed

 $(1.5 + 0.14 \tan \theta)$, speed $32^{\circ} \min^{-1}$

- Absorption correction: none
- 2533 measured reflections
- 2218 independent reflections
- 1926 observed reflections
 - $[F > 3\sigma(F)]$

Cu $K\alpha_1$ radiation $\lambda = 1.5405$ Å Cell parameters from 20 reflections $\theta = 28.0-30.5^{\circ}$ $\mu = 3.157$ mm⁻¹ T = 297 K Prism $0.35 \times 0.30 \times 0.15$ mm Clear Crystal source: chemical synthesis

 $R_{int} = 0.020$ $\theta_{max} = 65^{\circ}$ $h = -12 \rightarrow 12$ $k = 0 \rightarrow 14$ $l = 0 \rightarrow 11$ 3 standard reflections monitored every 200 reflections intensity variation: <3%

REGULAR STRUCTURAL PAPERS

Refinement		C3	0.1533 (2)	0.1272 (1) 0.0747 (2)	0.051 (1)
Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.16$	C4 N5	0.2542 (2)	0.0895 (2) 0.0323 (2) 1) 0.1155 (2)	0.059(1)
Final $R = 0.0396$	$\Delta c = 0.230 c Å^{-3}$	C6	0.3843 (2)	-0.0041 (2) 0.1921 (2)	0.052 (1)
wR = 0.0464	$\Delta \rho_{\rm max} = 0.250 \ \text{e A}$	C7	0.2925 (2)	-0.0930 (1) 0.1812 (2)	0.047 (1)
S = 1.458	$\Delta \rho_{\rm min} = -0.345 \ {\rm e \ A}^{-3}$	N8 C0	0.2509(1)	-0.1265 ($\begin{array}{c} 1) & 0.2892 (1) \\ 2) & 0.4070 (2) \end{array}$	0.051(1)
1926 reflections	Atomic scattering factors	C10	0.2744(2) 0.2121(2)	0.0125 (2) 0.4070(2) 2) 0.4311(2)	0.052 (1)
235 parameters	from International Tables	C11	0.0351 (3)	0.1405 (3) -0.0053 (3)	0.072 (1)
All H-atom parameters re-	for X-ray Crystallography	C12	0.2656 (5)	0.0591 (4) -0.1041 (4)	0.103 (1)
fined	(1974, Vol. IV)	C13	0.4564 (4)	0.1574 (3) 0.1100 (8) 1) 0.2611 (2)	$0.109^{\circ}(2)$
Calculated weights		015	0.2709 (1)	-0.1359 (1) 0.2011 (2) 1) 0.0780 (1)	0.067 (1)
$w = 1/[\sigma^2(F) + 0.019F^2]$		C16	0.1807 (4)	-0.2233 (3) 0.2900 (4)	0.078 (1)
		C17	0.3693 (3)	-0.1212 ($\begin{array}{ccc} 2) & 0.4977 (3) \\ (4) & 0.5460 (3) \end{array}$	0.068(1)
Common d (TD)		C18	0.2309 (4)	0.0790 (4) 0.5469 (5)	0.062 (1)
		T 11 0		. ,		100
Crystal data		Table 2.	Geometri	ic paramete	ers (A, °) for con	ipound (I)
$C_{16}H_{14}N_2O_2S_2$	Cu $K\alpha_1$ radiation	S1—S2		2.058 (1)	C6-014	1.223 (3)
$M_r = 303.42$	$\lambda = 1.5405 \text{ A}$	S2-C3		1.769 (2)	C7-015	1.323 (3)
Monoclinic	Cell parameters from 20	C3—C4		1.324 (4)	C7—N8	1.337 (3)
$P2_1/n$	reflections	C3-C11		1.503 (4)	N8-C9	1.432 (3)
a = 27.229 (3) Å	$\theta = 28.5 - 30.5^{\circ}$	C4N5		1.429 (3)	N8C16	1.467 (4)
b = 7.649 (1) Å	$\mu = 3.165 \text{ mm}^{-1}$	N5-C6		1.337 (3)	C9-C17	1.496 (4)
c = 7.358 (1) Å	T = 297 K	N5-C13		1.464 (5)	C10C18	1.500 (5)
$\beta = 90.82 \ (2)^{\circ}$	Prism	C10-S1-S	S2	103.2 (1)	N5	117.3 (2)
V = 1532.5 (7) Å ³	$0.30 \times 0.20 \times 0.25 \text{ mm}$	C3—S2—S1	1	103.7 (1)	O15-C7-N8	124.0 (2)
Z = 4	Clear	C4-C3-C	211	124.2 (2)	O15C7C6	118.9 (2)
$D_x = 1.432 \text{ Mg m}^{-3}$	Crystal source: chemical	C11-C3-S	2 S2	121.3(2) 114.1(2)	N8-C7-C8 C7-N8-C9	110.7(2) 122.5(2)
	synthesis	C3-C4-N	15	120.7 (2)	C7-N8-C16	119.8 (2)
		C3-C4-C	12	123.9 (3)	C9-N8-C16	117.7 (2)
Data collection	• • • • •	N5-C4-C	12 14	115.4 (3)	C10-C9-N8 C10-C9-C17	120.5 (2)
Rigaku AFC-5 diffractome-	$R_{\rm int} = 0.023$	C6-N5-C	213	118.9 (3)	N8-C9-C17	114.9 (2)
ter	$\theta_{\rm max} = 65^{\circ}$	C4—N5—C	13	117.2 (3)	C9-C10-C18	124.4 (2)
$\omega/2\theta$ scans, ω -scan width	$h = -32 \rightarrow 32$	014—C6—	N5 C7	123.6 (2)	C9-C10-S1	121.7 (2)
$(1.3 + 0.14 \tan \theta)^{\circ}$, speed	$k = 0 \rightarrow 8$	014		118.7 (2)	018-010-51	115.9 (2)
$32^{\circ} \text{ min}^{-1}$	$l = 0 \rightarrow 8$	T. 1 1. 0	F /·		<i>.</i>	· · ·
Absorption correction:	3 standard reflections	Table 3.	Fraction	al atomic d	coordinates and	equivalent
none	monitored every 200	isotrop	oic therma	l paramete	rs (A²) for comp	ound (II)
2937 measured reflections	reflections		L	$l_{eq} = \frac{1}{2} \sum_{i} \sum_{i} l_{i}$]a*a*aa.	
2009 independent reflections	intensity variation: <3%		, v	eq 3		17
E > 2 - (E)		S1	0.87951 (4)	0.2787 (1) 0.7072 (1)	0.047(1)
[r > 30(r)]		S2	0.92668 (4)	0.0953 (1) 0.6046 (1)	0.052 (1)
Pofinament		C3	0.9626 (1)	0.2073 (5) 0.4407 (5)	0.041 (1)
Acjinement -2		N5	0.9487 (1)	0.2198 ($\begin{array}{ccc} 3 & 0.2602 (3) \\ 4 & 0.1946 (4) \end{array}$	0.041(1) 0.041(1)
Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.14$	C6	0.8605 (1)	0.2483 (5) 0.1922 (5)	0.039 (1)
Final $R = 0.0492$	$\Delta \rho_{\rm max}$ = 0.239 e Å ⁻³	C7	0.8629 (1)	0.4346 (5) 0.2635 (5)	0.038 (1)
wK = 0.0480	$\Delta \rho_{\rm min} = -0.509 \ {\rm e} \ {\rm \AA}^{-3}$	N8 (9	0.8295 (1)	0.4741 (4) 0.3940 (4) 5) 0.4767 (5)	0.039(1)
S = 1.090	Atomic scattering factors	C10	0.8212 (1)	0.2308 (5) 0.6073 (5)	0.038 (1)
2333 fellections	from International Tables	C11	1.0084 (1)	0.2713 (6) 0.4987 (7)	0.053 (1)
200 parameters	for X-ray Crystallography	CII [*] . C12	1.0401 (1)	0.3408 (6) 0.3730 (9) 6) 0.1346 (6)	0.062 (2)
All ri-atom parameters re-	(1974, Vol. IV)	C12'	1.0272 (1)	0.3471 (6) 0.1923 (8)	0.052(1)
Coloulated weights		C13	0.9026 (2)	-0.0203 (6) 0.1157 (8)	0.060 (1)
$u = 1/[\sigma^2(F) \pm 0.005 F^2]$		014	0.8220(1)	0.1938 ($\begin{array}{c} 4) & 0.1266(4) \\ 4) & 0.1062(4) \end{array}$	0.055 (1)
w = 1/[0 (r) + 0.003r]		C16	0.88235 (2)	0.5436 (6) 0.1902 (4)	0.054(1) 0.052(1)
		C17	0.7519 (1)	0.3210 (6) 0.4243 (6)	0.048 (1)
Table 1 Fractional atomic	coordinates and convincion	C17'	0.7248 (1)	0.1845 (7) 0.4960 (6)	0.057 (1)
inone i. i racitorati atomic	coordinates and equivalent	C10	0.7930(1)	0.0936 (ס) עניס (ס)	0.053(1)

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $(Å^2)$ for compound (I)

 $U_{\rm eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i . \mathbf{a}_j.$

1 0	Table 4. Geo	ometric parame	ters (Å, °) for	compound (II)
∼ 2 (1) D (1)	S1—S2 S1—C10	2.053 (1) 1.779 (4)	C7—N8 N8—C9	1.366 (5) 1.432 (5)

0.0691 (7)

0.6150 (6)

0.060(1)

0.7457 (1)

C18 C18′

U_{eq} 0.062 (1) x 0.08380 (6) у z 0.32954 (7) 0.23109 (7) **S**1 0.05351 (6) S2 0.15129 (7) 0.17557 (6) 0.060 (1)

S2-C3	1.783 (4)	N8-C16	1.458 (6)
C3-C4	1.379 (6)	C9-C10	1.382 (5)
C3–C11	1.400 (6)	C9-C17	1.390 (5)
C4—C12	1.391 (6)	C10-C18	1.390 (6)
C4—N5	1.434 (5)	C11–C11′	1.381 (7)
N5-C6	1.346 (5)	C11'-C12'	1.371 (9)
N5-C13	1.457 (6)	C12-C12'	1.389 (7)
C6-014	1.223 (5)	C17'-C18'	1.362 (7)
C6C7	1.519 (6)	C17'-C17	1.386 (7)
C7—015	1.216 (5)	C18'-C18	1.386 (7)
C10-S1-S2	105.5 (1)	C7—N8—C9	120.8 (3)
C3-S2-S1	105.8 (1)	C7—N8—C16	121.2 (3)
C4-C3-C11	120.0 (4)	C9-N8-C16	117.9 (3)
C4-C3-S2	122.7 (3)	C10-C9-C17	120.2 (3)
C11-C3-S2	117.1 (3)	C10-C9-N8	120.9 (3)
C3-C4-C12	119.7 (3)	C17C9N8	118.9 (3)
C3-C4-N5	121.8 (3)	C9C10C18	119.7 (3)
C12-C4-N5	118.3 (3)	C9-C10-S1	120.6 (3)
C6-N5-C4	123.9 (3)	C18-C10-S1	119.3 (3)
C6-N5-C13	119.6 (3)	C11'-C11-C3	119.5 (4)
C4-N5-C13	116.4 (3)	C12'-C11'-C11	120.6 (4)
O14-C6-N5	123.0 (4)	C12′—C12—C4	119.9 (4)
O14-C6-C7	119.2 (3)	C11'-C12'-C12	120.1 (5)
N5-C6-C7	117.7 (3)	C17′—C17—C9	119.0 (4)
O15-C7-N8	122.8 (3)	C18'-C17'-C17	120.9 (4)
O15-C7-C6	121.7 (3)	C18'-C18-C10	119.7 (4)
N8-C7-C6	115.1 (3)	C17'-C18'-C18	120.2 (4)

Data collection: *AFD* (Rigaku Corporation, 1985a). Program(s) used to solve structure: *SAP1*85 (Yao, Zheng, Qian, Han, Gu & Fan, 1985). Program(s) used to refine (full-matrix least squares) structure: *RCRYSTAN* (Rigaku Corporation, 1985b). Molecular graphics: *ACV* (Stardent Computer Inc., 1990). Software used to prepare material for publication: *XPACK* (Yamaguchi, 1987).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71096 (23 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AS1048]

References

- Itai, A., Toriumi, Y., Tomioka, N., Kagechika, H., Azumaya, I. & Shudo, K. (1989). *Tetrahedron Lett*. pp. 6177-6180.
- Itoh, T., Nagata, K., Okada, M. & Ohsawa, A. (1990). Tetrahedron Lett. pp. 2429-2430.
- Itoh, T., Nagata, K., Okada, M. & Ohsawa, A. (1992). Chem. Pharm. Bull. 40, 2283-2286.
- Itoh, T., Nagata, K., Okada, M., Takahashi, H. & Ohsawa, A. (1991). Tetrahedron, 47, 4317-4324.
- Itoh, T., Nagata, K., Okada, M., Yamaguchi, K. & Ohsawa A. (1992). Tetrahedron Lett. pp. 6983-6986.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Rigaku Corporation (1985a). AFD. Diffractometer control program system. Rigaku Corporation, Tokyo, Japan.
- Rigaku Corporation (1985b). RCRYSTAN. X-ray analysis program system. Rigaku Corporation, Tokyo, Japan.
- Stardent Computer Inc. (1990). ACV. Application Chemistry Viewer. Stardent Computer Inc., Mewton, Massachusettes, USA.
- Yamaguchi, K. (1987). XPACK. Programs for X-ray parameters report. Showa Univ., Tokyo, Japan.
- Yao, J.-X., Zheng, C.-D., Qian., J.-Z., Han, F.-S., Gu, Y.-X. & Fan, H.-F. (1985). SAP185. A computer program for automatic solution of crystal structures from X-ray diffraction data. Institute of Physics, Chinese Academy of Sciences, Beijing, China.

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1993). C49, 1517-1519

15,16-Bis(dispiro[2.0.2.1]hept-7-ylidene)hexaspiro[2.0.2.0.0.0.2.0.2.0]hexadecane, C₃₀H₃₂

DMITRII S. YUFIT AND YURI T. STRUCHKOV

Institute of Organoelement Compounds, 28 Vavilov St., Moscow 117813, Russia

SERGEI I. KOZHUSHKOV AND ARMIN DE MEIJERE

Institut für Organische Chemie, Georg-August Universität, Tammanstrasse 2, D-3400, Göttingen, Germany

(Received 23 November 1992; accepted 13 January 1993)

Abstract

The formation of the title compound as the 'head-to-head' dimer in the dimerization of bis(dispiro[2.0.2.1]hept-7-ylidene)methane has been established. The steric repulsion between bulky substituents results in slight bending of the four-membered cycle.

Comment

The X-ray structure of the title compound (I) has been determined as part of our investigations of the branched triangulanes and their derivatives (Yufit, Struchkov, Kozhushkov & De Meijere, 1993, and references therein). The compound (I) was obtained by spontaneous dimerization of bis(dispiro[2.0.2.1]hept-7-ylidene)methane. This [2+2]-cycloaddition reaction may result in the formation of two possible isomers; the present study was performed in order to confirm unequivocally the molecular structure of (I).

The molecule (I) is the 'head-to-head' isomer. The bond lengths of vicinal (relative to the spiro atoms; average 1.481 Å) and distal (average 1.523 Å) bonds in the terminal cyclopropane rings are in good agreement with those reported for previously studied trian-